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Abstract

The recently developed sparse network training methods, such as Lottery Ticket Hy-1

pothesis (LTH) and its variants, have shown impressive learning capacity by finding2

sparse sub-networks from a dense one. While these methods could largely sparsify3

deep networks, they generally focus more on realizing comparable accuracy to4

dense counterparts yet neglect network calibration. However, how to achieve cali-5

brated network predictions lies at the core of improving model reliability, especially6

when it comes to addressing the overconfident issue and out-of-distribution cases.7

In this study, we propose a novel Distributionally Robust Optimization (DRO)8

framework to achieve an ensemble of lottery tickets towards calibrated network9

sparsification. Specifically, the proposed DRO ensemble aims to learn multiple10

diverse and complementary sparse sub-networks (tickets) with the guidance of11

uncertainty sets, which encourage tickets to gradually capture different data distri-12

butions from easy to hard and naturally complement each other. We theoretically13

justify the strong calibration performance by showing how the proposed robust14

training process guarantees to lower the confidence of incorrect predictions. Ex-15

tensive experimental results on several benchmarks show that our proposed lottery16

ticket ensemble leads to a clear calibration improvement without sacrificing accu-17

racy and burdening inference costs. Furthermore, experiments on OOD datasets18

demonstrate the robustness of our approach in the open-set environment.19

1 Introduction20

While there is remarkable progress in developing deep neural networks with densely connected layers,21

most of these dense networks have poor calibration performance [9], limiting their applicability in22

safety-critical domains like self-driving cars [3] and medical diagnosis [11]. The poor calibration23

is mainly due to the fact that there exists a good number of wrongly classified data samples (i.e.,24

low accuracy) with high confidence resulting from the memorization effect introduced by an over-25

parameterized architecture [24]. Recent sparse network training methods, such as Lottery Ticket26

Hypothesis (LTH) [6] and its variants [2, 32, 17, 15, 30] generally assume that there exists a sparse27

sub-network (i.e., lottery ticket) in a randomly initialized dense network, which could be trained28

in isolation and also match the performance of its dense counterpart network in terms of accuracy.29

While these methods may, to some extent, alleviate the overconfident issue, two key challenges30

remain to be addressed: (i) most of sparse network training methods require pre-training of a dense31

network followed by multi-step iterative pruning, making the overall training process highly costly,32

especially for large dense networks; (ii) even for techniques that do not rely on pre-training and33

iterative pruning (e.g., Edge Popup or EP [23]), their learning goal focuses on pushing the accuracy34

up to the original dense networks and hence may still exhibit a severely over-fitting behavior, leading35

to a poor calibration performance as demonstrated in Figure 1 (b).36

Inspired by the recent success of using ensembles to estimate uncertainties [13, 29], a potential37

solution to realize well-calibrated predictions would be training multiple sparse sub-networks and38
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Figure 1: Calibration performance by expected calibration error (ECE) on Cifar100 dataset with
ResNet101 architecture with density K =15%. EP refers to the Edge Popup algorithm [23].

building an ensemble from them. As such, by leveraging accurate uncertainty quantification, the39

ensemble is expected to achieve better calibration. However, existing ensemble models of sparse40

networks rely on pre-training and iterative fine-tuning for learning each sub-network [17, 30], leading41

to a significant overhead for building the entire ensemble. Furthermore, an ensemble of independently42

trained sparse sub-networks does not necessarily improve the calibration performance. Since these43

networks are trained in a similar fashion from the same training data distribution, they could be44

strongly correlated such that the ensemble model will potentially inherit the overfitting behavior of45

each sub-network as shown in Figure 1(c). Therefore, the calibration capacity of sparse sub-network46

ensemble can be compromised as shown empirically in Figure 1 (d).47

To further enhance the calibration of the ensemble, it is critical to ensure sufficient diversity among48

sparse sub-networks so that they are able to complement each other. One natural way to achieve49

diversity is to allow each sparse sub-network (ticket) to primarily focus on a specific part of training50

data distribution. This inspires us to leverage the AdaBoost [25] framework that sequentially finds51

tickets by manipulating training data distribution based on errors. By this means, the AdaBoost52

facilitates the training for a sequence of complementary sparse sub-networks. However, the empirical53

analysis (see Table 1) reveals that in the AdaBoost ensemble, most sub-networks (except for the54

first one) severely under-fit data leading to poor generalization ability. This is mainly because of the55

overfitting behavior of the first sub-network, which assigns very low training losses to the majority of56

data samples, making the subsequent sub-networks concentrate on very rare difficult samples that are57

likely to be outliers or noises. Hence, directly learning from these difficult samples without having58

global knowledge of the entire training distribution will result in the failure of subsequent training59

tickets and also hurt the overall calibration.60

To this end, we need a more robust learning process for proper training of complementary sparse sub-61

networks, each of which can be learned in an efficient way to ensure the cost-effective construction62

of the entire ensemble. We propose a Distributionally Robust Optimization (DRO) framework to63

schedule learning an ensemble of lottery tickets (sparse sub-networks) with complimentary calibration64

behaviors that contribute to an overall well-calibrated ensemble as shown in Figure 1 (e-h). Our65

technique directly searches sparse sub-networks in a randomly initialized dense network without66

pre-training or iterative pruning. Unlike the AdaBoost ensemble, the proposed ensemble ticket67

method starts from the original training distribution and eventually allows learning each sub-network68

from different parts of the training distribution to enrich diversity. This is also fundamentally different69

from existing sparse ensemble models [17, 30], which attempt to obtain diverse sub-networks in a70

heuristic way by relying on different learning rates. As a result, these models offer no guaranteed71

complementary behavior among sparse sub-networks to cover a different part of training data, which72

is essential to alleviate the overfitting behavior of the learned sparse sub-networks. In contrast, we73

realize a principled scheduling process by changing the uncertainty set of DRO, where a small set74

pushes sub-networks learning with easy data samples and a large set focuses on the difficult ones75

(see Figure 2). By this means, the ticket ensemble governed by our DRO framework could work76

complementary and lead to much better calibration ability as demonstrated in Figure 1(h). On the77

one hand, we hypothesize that the ticket found with easy data samples will tend to be learned and78
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overfitted easily, resulting in overconfident predictions (Figure 1(e)). On the other hand, the ticket79

focused on more difficult data samples will be less likely to overfit and may become conservative and80

give under-confident predictions. Thus, it is natural to form an ensemble of such lottery tickets to81

complement each other in making calibrated predictions. As demonstrated in Figure 1 (h), owing to82

the diversity in the sparse sub-networks (e-g), the DRO ensemble exhibits better calibration ability. It83

is also worth noting that under the DRO framework, our sparse sub-networks already improve the84

calibration ability as shown in Figure 1 (f-g), which is further confirmed by our theoretical results.85

Experiments conducted on three benchmark datasets demonstrate the effectiveness of our proposed86

technique compared to sparse counterparts and dense networks. Furthermore, we show through87

the experimentation that because of the better calibration, our model is being able to perform well88

on the distributionally shifted datasets [6] (CIFAR10-C and CIFAR100-C). The experiments also89

demonstrate that our proposed DRO ensemble framework can better detect open-set samples on90

varying confidence thresholds. The contribution of this work can be summarized as follows:91

• a new sparse ensemble framework that combines multiple sparse sub-networks to achieve better92

calibration performance without dense network training and iterative pruning.93

• a distributionally robust optimization framework that schedules the learning of an ensemble94

complementary sub-networks (tickets),95

• theoretical justification of the strong calibration performance by showing how the proposed robust96

training process guarantees to lower the confidence of incorrect predictions in Theorem 2,97

• extensive empirical evidence on the effectiveness of the proposed lottery ticket ensemble in terms98

of competitive classification accuracy and improved open-set detection performance.99

2 Related Work100

Sparse networks training. Sparse network training has received increasing attention in recent years.101

Representative techniques include lottery ticket hypothesis (LTH) [6] and its variants [4, 28]. To102

avoid training a dense network, supermasks have been used to find the winning ticket in the dense103

network without training network weights [32]. Edge-Popup (EP) extends this idea by leveraging104

training scores associated with the neural network weights and only weights with top scores are used105

for predictions. There are two key limitations to most existing LTH techniques. First, most of them106

require pre-training of a dense network followed by multi-step iterative pruning making the overall107

training process expensive. Second, their learning objective remains as improving the accuracy up to108

the original dense networks and may still suffer from over-fitting (as shown in Figure 1).109

Sparse network ensemble. There are recent advancements in building ensembles from sparse110

networks. A pruning and regrowing strategy has been developed in a model, called CigL [15],111

where dropout serves as an implicit ensemble to improve the calibration performance. CigL requires112

weight updates and performs pruning and growing for multiple rounds, leading to a high training113

cost. Additionally, dropping many weights may lead to a performance decrease, which prevents114

building highly sparse networks. This idea has been further extended by using different learning rates115

to generate different typologies of the network structure for each sparse network [17, 30]. While116

diversity among sparse networks can be achieved, there is no guarantee that this can improve the117

calibration performance of the final ensemble. In fact, different networks may still learn from the118

training data in a similar way. Hence, the learned networks may exhibit similar overfitting behavior119

with a high correlation, making it difficult to generate a well-calibrated ensemble. In contrast, the120

proposed DRO ensemble schedules different sparse networks to learn from complementary parts of121

the training distribution, leading to improved calibration with theoretical guarantees.122

Model calibration. Various attempts have been proposed to make the deep models more reliable123

either through calibration [9, 22, 28] or uncertainty quantification [7, 26]. Post-calibration techniques124

have been commonly used, including temperature scaling [22, 9], using regularization to penalize125

overconfident predictions [21]. Recent studies show that post-hoc calibration falls short of providing126

reliable predictions [20]. Most existing techniques require additional post-processing steps and an127

additional validation dataset. In our setting, we aim to improve the calibration ability of sparse128

networks without introducing additional post-calibration steps or validation dataset.129

3 Methodology130

Let DN = {X,Y} = {(x1, y1), .., (xN , yN )} be a set of training samples where each xn ∈ RD is131

a D-dimensional feature vector and yn ∈ [1, C] be associated label with C total classes. Let M be132
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Figure 2: Robust ensemble where η defines the size of an uncertainty set with η1 ≤ η2 ≤ η3.

the total number of base learners used in the given ensemble technique. Further, consider K to be133

the density ratio in the given network, which denotes the percentage of weights we keep during the134

training process. The major notations are summarized in the Appendix.135

3.1 Preliminaries136

Edge-Popup (EP) [23]. EP finds a lottery ticket (sparse sub-network) from a randomly initialized137

dense network based on the score values learned from training data. Specifically, to find the sub-138

network with density K, the algorithm optimizes the scores associated with each weight in the dense139

network. During the forward pass, the top-K weights in each layer are selected based on their scores.140

During the backward pass, scores associated with all weights are updated, which allows potentially141

useful weights that are ignored in previous forward passes to be re-considered.142

Expected calibration error. Expected Calibration Error (ECE) measures the correspondence between143

predicted probability and empirical accuracy [18]. Specifically, mis-calibration is computed based144

on the difference in expectation between confidence and accuracy: Ep̂ [|P(ŷ = y|p̂ = p)− p|]. In145

practice, we approximate the expectation by partitioning confidences into T bins (equally spaced)146

and take the weighted average on the absolute difference between each bins’ accuracy and confidence.147

Let Bt denote the t-th beam and we have ECE =
∑T

t=1
|Bt|
N |acc(Bt)− conf(Bt)|.148

3.2 Distributionally Robust Ensemble (DRE)149

As motivated in the introduction, to further enhance the calibration of a deep ensemble, it is instru-150

mental to introduce sufficient diversity among the component sparse sub-networks so that they can151

complement each other when forming the ensemble. One way to achieve diversity is to allow each152

sparse sub-network to primarily focus on a specific part of the training data distribution. Figure 2153

provides an illustration of this idea, where the training data can be imagined to follow a multivariate154

Gaussian distribution with the red dot representing its mean. In this case, the first sub-network will155

learn the most common patterns by focusing on the training data close to the mean. The subsequent156

sub-networks will then learn relatively rare patterns by focusing on other parts of the training data157

(e.g., two or three standard deviations from the mean).158

AdaBoost ensemble. The above idea inspires us to leverage the AdaBoost framework [25] to159

manipulate the training distribution that allows us to train a sequence of complementary sparse sub-160

networks. In particular, we train the first sparse sub-network from the original training distribution,161

where each data sample has an equal probability to be sampled. In this way, the first sparse sub-162

network can learn the common patterns from the most representative training samples. Starting from163

the second sub-network, the training distribution is changed according to the losses suffered from the164

previous sub-network during the last round of training. This allows the later sub-networks to focus165

on the difficult data samples by following the spirit of AdaBoost.166

However, our empirical results reveal that in the AdaBoost ensemble, most sub-networks (except for167

the first one) severely underfit the training data, leading to a rather poor generalization capability.168

This is caused by the overfitting behavior of the first sparse sub-network, which assigns very small169

training losses to a majority of data samples. As a result, the subsequent sub-networks can only focus170

on a limited number of training samples that correspond to relatively rare patterns (or even outliers171

and noises) in the training data. Directly learning from these difficult data samples without a general172

knowledge of the entire training distribution will result in the failure of training the sub-networks.173
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Distributionally robust ensemble (DRE). To tackle the challenge as outlined above, we need a more174

robust learning process to ensure proper training of complementary sparse sub-networks. Different175

from the AdaBoost ensemble, the training of all sub-networks starts from the original training176

distribution in the DRO framework. Meanwhile, it also allows each sub-network to eventually177

focus on learning from different parts of the training distribution to ensure the desired diverse and178

complementary behavior. Let l(xn,Θ) denote the loss associated with the nth data sample with Θ179

being the parameters in the sparse sub-network. Then, the total loss is given by180

LRobust(Θ) = max
z∈URobust

N∑
n=1

znl(xn,Θ) (1)

The uncertainty set defined to assign weights z is given as181

URobust :=

{
z ∈ RN : z⊤1 = 1, z ≥ 0, Df (z∥

1

N
) ≤ η

}
(2)

where Df (z∥q) is f -divergence beCitween two distributions z and q and η controls the size of the182

uncertainty set and 1 ∈ 1N is N -dimensional unit vector. Depending on the η value, the above183

robust framework instantiates different sub-networks. For example, by making η → ∞, we have184

URobust =
{
z ∈ RN : z⊤1 = 1, z ≥ 0, Df (z∥ 1

N ) ≤ ∞
}

. In this case, we train a sub-network by185

only using the most difficult sample in the training set. On the other extreme with η → 0, we186

have URobust =
{
z ∈ RN : z⊤1 = 1, z ≥ 0, Df (z∥ 1

N ) ≤ 0
}

, which assigns equal weights to all data187

samples. So, the sub-network learns from the original training distribution.188

To fully leverage the key properties of the robust loss function as described above, we propose189

to perform distributionally robust ensembling learning to generate a diverse set of sparse sub-190

networks with well-controlled overfitting behavior that can collectively achieve superior calibration191

performance. The training process starts with a relatively small η value to ensure that the initially192

generated sub-networks can adequately capture the general patterns from the most representative193

data samples in the original training distribution. The training proceeds by gradually increasing the η194

value, which allows the subsequent sub-networks to focus on relatively rare and more difficult data195

samples. As a result, the later generated sub-networks tend to produce less confident predictions that196

complement the sub-networks generated in the earlier phase of the training process. This diverse and197

complementary behavior among different sparse sub-networks is clearly illustrated in Figure 1 (e)-(g).198

During the ensemble phase, we combine the predictions of different sub-networks in the logit space199

by taking the mean and then performing the softmax. In this way, the sparse sub-networks with high200

η values help to lower the overall confidence score, especially those wrongly predicted data samples.201

Furthermore, the sub-networks with lower η values help to bring up the confidence score of correctly202

predicted data samples. Thus, the overall confidence score will be well compensated, resulting in a203

better calibrated ensemble.204

3.3 Theoretical Analysis205

In this section, we theoretically justify why the proposed DRE framework improves the calibration206

performance by extending the recently developed theoretical framework on multi-view learning [1].207

In particular, we will show how it can effectively lower the model’s false confidence on its wrong208

predictions resulting from spurious correlations. For this, we first define the problem setup that209

includes some key concepts used in our theoretical analysis. We then formally show that DRO helps to210

decorrelate the spurious correlation by learning from less frequent features that characterize difficult211

data samples in a training dataset. This important property further guarantees better calibration212

performance of DRO as we show in the main theorem.213

Problem setup. Assume that each data sample xn ∈ RD is divided into P total patches, where each214

patch is a d-dimensional vector. For the sake of simplicity, let us assume each class c ∈ [1, C] has215

two characterizing (major) features vc = {vc,l}Ll=1 with L = 2 . For example, the features for Cars216

could be Headlights and Tires. Let DS
N and DM

N denote the set of single-view and multi-view data217

samples, respectively, which are formally defined as218 {
{xn, yn} ∈ DS

N if one of vc,1 or vc,2 appears along with some noise features
{xn, yn} ∈ DM

N if both vc,1 and vc,2 appears along with some noise features
(3)

The noise features (also called minor features) refer to those that do not characterize (or differentiate)219

a given class c (e.g., being part of the background). In important applications like computer vision,220
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images supporting such a "multi-view" structure is very common [1]. For example, for most car221

images, we can observe all main features, such as Wheels, Tires, and Headlights so they belong222

to DM
N . Meanwhile, there may also be images, where multiple features are missing. For example,223

if the car image is taken from the front, the tire and wheel features may not be captured. In most224

real-world datasets, such single-view data samples are usually much limited as compared to their225

multi-view counterparts. The Appendix provides concrete examples of both single and multi-view226

images. Let us consider (x, y) ∈ DS
N with the major feature vc,l where y = c. Then each patch227

xp ∈ Rd can be expressed as228

xp = apvc,l +
∑

v′∈∪\vc

αp,v′
v′ + ϵp (4)

where ∪ = {vc,1,vc,2}Cc=1 is collection of all features, ap > 0 is the weight allocated to feature vc,l,229

αp,v′ ∈ [0, γ] is the weight allocated to the noisy feature v′ that is not present in feature set vc i.e.,230

v′ ∈ ∪\vc, and ϵp ∼ N (0, (σp)21) is a random Gaussian noise. In (4), a patch xp in a single-view231

sample x also contains set of minor (noise) features presented from other classes i.e., v′ ∈ ∪\vc in232

addition to the main feature vc,l. Since vc,l characterizes class c, we have ap > αp,v′
;∀v′ ∈ ∪\vc.233

However, since the single-view data samples are usually sparse in the training data, it may prevent234

the model from accumulating a large ap for vc,l as shown Lemma 1 below. In contrast, some noise235

v′ may be selected as the dominant feature (due to spurious correlations) to minimize the errors of236

specific training samples, leading to potential overfitting of the model.237

We further assume that the network contains H convolutional layers, which outputs F (x; Θ) =238

(F1(x), ...FC(x)) ∈ RC . The logistic output for the cth class can be represented as239

Fc(x) =
∑

h∈[H]

∑
p∈[P ]

ReLU[⟨Θc,h,x
p⟩] (5)

where Θc,h denote the hth convolution layer (feature map) associated with class c. Under the above240

data and network setting, we propose the following lemma.241

Lemma 1. Let vc,l be the main feature vector present in the single-view data DS
N . Assume that242

number of single-view data samples containing feature vc,l is limited as compared with the rest, i.e.,243

Nvc,l
≪ N∪\vc,l

. Then, at any iteration t > 0, we have244

⟨Θt+1
c,h ,vc,l⟩ = ⟨Θt

c,h,vc,l⟩+ βmax
z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
(6)

where κ is a dataset specific constant, β is the learning rate, SOFTc is the softmax output for class c,245

and Vc,h,l(xj) =
∑

p∈Pvc,l
(xj)

ReLU(⟨Θc,h,x
p
j ⟩ap) with Pvc,l

(xj) being the collection of patches246

containing feature vc,l in xj . The set U is an uncertainty set that assigns a weight to each data247

sample based on it loss. In particular, the uncertainty set under DRO is given as in (2) and we248

further define the uncertainty set under ERM: UERM :=
{
z ∈ RN : zn = 1

N ;∀n ∈ [1, N ]
}

. Learning249

via the robust loss in (1) leads to a stronger correlation between the network weights Θc,h and the250

single-view data feature vc,l:251

{⟨Θt
c,h,vc,l⟩}Robust > {⟨Θt

c,h,vc,l⟩}ERM ;∀t > 0 (7)

Remark. The robust loss LRobust forces the model to learn from the single-view samples (according252

to the loss) by assigning a higher weight. As a result, the network weights will be adjusted to increase253

the correlation with the single-view data features vc,l due to Lemma 1. In contrast, for standard ERM,254

weight is uniformly assigned to all samples. Due to the sparse single-view data features (which also255

makes them more difficult to learn from, leading to a larger loss), the model does not grow sufficient256

correlation with vc,l. In this case, the ERM model instead learns to memorize some noisy feature257

v′ introduced through certain spurious correlations. For a testing data sample, the ERM model may258

confidently assign it to an incorrect class k according to the noise feature v′. In the theorem below,259

we show how the robust training proces can effectively lower the confidence of incorrect predictions,260

leading to an improved calibration performance.261

Theorem 2. Given a new testing sample x ∈ DN
S containing vc,l as the main feature and a dominant262

noise feature v′ that is learned due to memorization, we have263

{SOFTk(x)}Robust < {SOFTk(x)}ERM (8)
where v′ is assumed to be a main feature characterizing class k.264

6



Remark. For ERM, due to the impact of the dominate noise feature v′, it assigns a large probability265

to class k since v′ is one of its major features, leading to high confidence for an incorrect prediction.266

In contrast, the robust learning process allows the model to learn a stronger correlation with the267

main feature vc,l as shown in Lemma 1. Thus, the model is less impacted by the noise feature v′,268

resulting in reduced confidence in predicting the wrong class k. Such a key property guarantees269

an improved calibration performance, which is clearly verified by our empirical evaluation. It is270

also worth noting that Theorem 2 does not necessarily lead to better classification accuracy. This is271

because (8) only ensures that that the false confidence is lower than an ERM model, but there is no272

guarantee that {SOFTk(x)}Robust < {SOFTc(x)}Robust. It should be noted that our DRE framework273

ensures diverse sparse sub-network focusing on different single-view data samples from different274

classes. As such, an ensemble of those diverse sparse subnetworks provides maximum coverage of275

all features (even the weaker one) and therefore can ultimately improve the calibration performance.276

The detailed proofs are provided in the Appendix.277

4 Experiments278

We perform extensive experimentation to evaluate the distributionally robust ensemble of sparse279

sub-networks. Specifically, we test the ability of our proposed technique in terms of calibration and280

classification accuracy. For this, we consider three settings: (a) general classification, (b) out-of-281

distribution setting where we have in-domain data but with different distributions, and (c) open-set282

detection, where we have unknown samples from new domains.283

4.1 Experimental Settings284

Dataset description. For the general classification setting, we consider three real-world datasets:285

Cifar10, Cifar100 [12], and TinyImageNet [14]. For the out-of-distribution setting, we consider the286

corrupted version of the Cifar10 and Cifar100 datasets which are named Cifar10-C and Cifar100-C287

[10]. It should be noted that in this setting, we train all models in clean dataset and perform testing288

in the corrupted datasets. For open-set detection, we use the SVHN dataset [19] as the open-set289

dataset and Cifar10 and Cifar100 as the close-set data. A more detailed description of each dataset is290

presented in the Appendix.291

Evaluation metrics. To assess the model performance in the first two settings, we report the292

classification accuracy (ACC) along with the Expected Calibration Error (ECE). In the case of293

open-set detection, we report open-set detection for different confidence thresholds.294

Implementation details. In all experiments, we use a family of ResNet architectures with two density295

levels: 9% and 15%. To construct an ensemble, we learn 3 sparse sub-networks each with a density296

of 3% for the total of 9% density and that of 5% density for the total of density 15%. All experiments297

are conducted with the 200 total epochs with an initial learning rate of 0.1 and a cosine scheduler298

function to decay the learning rate over time. The last-epoch model is taken for all analyses. For the299

training loss, we use the EP-loss in our DRO ensemble that optimizes the scores for each weight300

and finally selects the sub-network from the initialized dense network for the final prediction. The301

selection is performed based on the optimized scores. More detailed information about the training302

process and hyperparameter settings can be found in the Appendix.303

4.2 Performance Comparison304

In our comparison study, we include baselines that are relevant to our technique and therefore we305

primarily focus on the LTH-based techniques. Specifically, we include the initial lottery ticket306

hypothesis (LTH) [6] that iteratively performs pruning from a dense network until the randomly307

initialized sub-network with a given density is reached. Once the sub-network is found, the model308

trains the sub-network using the training dataset. Similarly, we also include L1 pruning [16]. We309

also include three approaches CigL [15], Sup-ticket [30], DST Ensemble [17] which are based on the310

pruning and regrowing sparse network training strategies. From Venkatesh et al. [28] we consider311

MixUp strategy as a comparison baseline as it does not require multi-step forward passes. A dense312

network is also included as a reference (denoted as Dense†). Furthermore, we report the performance313

obtained using the EP algorithm [23] on a single model with a given density. Finally, we also include314

the deep ensemble technique (i.e., Sparse Network Ensemble (SNE), where each base model is315

randomly initialized and independently trained. The approaches that require pre-training of a dense316

network are categorized under the Dense Pre-training category. Those performing sparse network317

training but actually updating the network parameters are grouped as Sparse Training. It should be318

noted that sparse training techniques still require iterative pruning and regrowing. Finally, techniques319

7



Table 1: Accuracy and ECE performance with 9% density for Cifar10 and Cifar100.

Training Type Approach
Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE
Dense† 94.82 5.87 95.12 5.99 76.40 16.89 77.97 16.73

Dense Pre-training L1 Pruning [16] 93.45 5.31 93.67 6.14 75.11 15.89 75.12 16.24
LTH [6] 92.65 3.68 92.87 6.02 74.09 15.45 74.41 16.12
DLTH [2] 93.27 5.87 95.12 7.09 77.29 16.64 77.86 17.26
Mixup [28] 92.86 3.68 93.06 6.01 74.15 15.41 74.28 16.05

Sparse Training CigL [15] 92.39 5.06 93.41 4.60 76.40 9.30 76.46 9.91
DST Ensemble [17] 88.87 2.02 84.93 0.8 63.57 7.23 63.22 6.18
Sup-ticket [30] 94.52 3.30 95.04 3.10 78.28 10.20 78.60 10.50

Mask Training AdaBoost 93.12 5.13 94.15 5.46 75.15 22.96 75.89 24.54
EP [23] 94.20 3.97 94.35 4.03 75.05 14.62 75.68 14.41
SNE 94.70 2.51 94.48 3.51 75.69 9.02 75.22 10.89
DRE (Ours) 94.60 0.7 94.28 0.7 74.68 1.20 74.37 2.09

Table 2: Accuracy and ECE on TinyImageNet.

Training Type Approach
K = 9% K = 15%

ResNet101 WideResNet101 ResNet101 WideResNet101

ACC ECE ACC ECE ACC ECE ACC ECE
Dense† 71.28 15.58 72.57 16.96 71.28 15.58 72.57 16.96

Dense Pre-training L1 Pruning [16] 68.85 14.72 69.78 16.38 70.24 14.24 70.98 15.36
LTH [6] 69.23 13.97 69.13 15.34 70.16 13.63 70.25 14.24
DLTH [2] 70.12 16.15 71.36 18.35 71.68 15.88 72.97 17.21
Mixup [28] 69.34 14.24 69.25 15.59 70.28 14.31 70.39 14.57

Mask Training AdaBoost 69.52 17.23 68.66 19.46 70.12 16.57 70.24 18.35
EP [23] 69.88 10.78 71.57 9.82 70.46 11.99 70.71 12.41
SNE 71.28 4.64 73.32 5.48 72.20 6.57 74.56 6.55
DRE (Ours) 71.68 3.48 74.04 2.82 72.00 1.52 73.72 1.08

Table 3: Accuracy and ECE performance on out-of-distribution datasets.

Training Type Approach
Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE
Dense† 79.65 19.63 79.65 19.63 54.75 35.32 54.75 35.32

Dense Pre-training L1 Pruning [16] 77.34 17.95 76.39 17.89 52.06 31.45 51.67 30.98
LTH [6] 75.85 17.88 76.15 17.62 50.79 31.23 51.35 30.56
DLTH [2] 79.67 21.74 80.12 20.31 54.82 37.55 55.12 35.74
Mixup [28] 76.35 17.74 76.88 17.55 51.36 31.12 51.92 30.35

Sparse Training CigL [15] 70.80 21.04 69.84 21.42 49.42 25.86 51.49 24.13
Sup-ticket [30] 72.89 17.80 73.01 18.82 48.80 24.99 48.81 25.62

Mask Training AdaBoost 75.94 22.96 74.55 21.46 51.36 38.45 51.25 38.34
EP [23] 77.58 17.82 77.73 17.46 52.18 30.60 52.14 29.48
SNE 78.93 15.73 78.61 15.56 54.74 24.22 54.00 20.54
DRE (Ours) 78.57 10.92 78.00 10.19 54.11 14.28 53.21 8.13

that attempt to search the best initialized sparse sub-network through mask update (e.g., EP) are320

grouped as Mask Training.321

General classification setting. In this setting, we consider clean Cifar10, Cifar100, and TinyIma-322

geNet datasets. Tables 1, 2, and 10 (in the Appendix) show the accuracy and calibration error for323

different models with density 9% and 15%. It should be noted that for the TinyImageNet dataset, we324

could not run the Sparse Training techniques due to the computation issue (i.e., memory overflow).325

This may be because sparse training techniques require maintaining additional parameters for the326

pruning and regrowing strategy. In the Appendix, we have made a comparison of the proposed DRE327

with those baselines on a lower architecture size. There are three key observations we can infer from328

the experimental results. First, sparse networks are able to maintain or improve the generalization329

performance (in terms of accuracy) with better calibration, which can be seen by comparing dense330

network performance with the edge-popup algorithm. Second, the ensemble in general helps to331

further lower the calibration error (lower the better). For example, in all datasets, standard ensemble332
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(a) CIFAR10 (K = 15%) (b) CIFAR10 (K = 9%) (c) CIFAR100 (K = 15%) (d) CIFAR100 (K = 9%)
Figure 3: Open-set detection performance on different confidence thresholds.

(SNE) consistently improves the EP model. Finally, the proposed DRE significantly improves the333

calibration performance by diversifying base learners and allow each sparse sub-network to focus334

on different parts of the training data. The strong calibration performance provides clear empirical335

evidence to justify our theoretical results.336

Out-of-distribution classification setting. In this setting, we assess the effectiveness of the proposed337

techniques on out-of-distribution samples. Specifically, [10] provide the Cifar10-C and Cifar100-C338

validation datasets which are different than that of the original clean datasets. They apply different339

corruptions (such as blurring noise, and compression) to shift the distribution of the datasets. We340

assess those corrupted datasets using the models trained using the clean dataset. Table 3 shows341

the performance using different architectures. In this setting, we have not included DST Ensemble,342

because: (a) its accuracy is far below the SOTA performance, and (b) same training mechanism as343

that of the Sup-ticket, whose performance is reported. As shown, the proposed DRE provides much344

better calibration performance even with the out of distribution datasets.345

Open-set detection setting. In this setting, we demonstrate the ability of our proposed DRO ensemble346

in detecting open-set samples. For this, we use the SVHN dataset as an open-set dataset. Specifically,347

if we have a better calibration, we would be able to better differentiate the open-set samples based348

on the confidence threshold. For this, we randomly consider 20% of the total testing in-distribution349

dataset as the open-set samples from the SVHN dataset. The reason for only choosing a subset of the350

dataset is to imitate the practical scenario where we have very few open-set samples compared to351

the close-set samples. We treat the open-set samples as the positive and in-distribution (close-set)352

ones as the negative. Since this is a binary detection problem, we compute the F-score [8] at various353

thresholds, which considers both precision and recall. Figure 3 shows the performance for the354

proposed technique along with comparative baselines. As shown, our proposed DRE (refereed as355

DRO Ensemble) always stays on the top for various confidence thresholds which demonstrates that356

strong calibration performance can benefit DRE for open-set detection as compared to other baselines.357

4.3 Additional Results, Ablation Study, and Qualitative Analysis358

Limited by space, we have reported additional results in the Appendix. Specifically, we compare359

the proposed DRE with other standard calibration techniques commonly used in dense networks.360

In addition, we have performed an ablation study to investigate the impact of parameter η and361

different backbones (i.e., ViT and WideResNet). We present a qualitative analysis to further justify362

the effectiveness of our proposed technique. Finally, we report the parameter size and inference speed363

(FLOPS) of DRE and compare it with existing baselines.364

5 Conclusion365

In this paper, we proposed a novel DRO framework, called DRE, that achieves an ensemble of lottery366

tickets towards calibrated network sparsification. Specifically, with the guidance of uncertainty sets367

under the DRO framework, the proposed DRE aims to learn multiple diverse and complementary368

sparse sub-networks (tickets) where uncertainty sets encourage tickets to gradually capture different369

data distributions from easy to hard and naturally complement each other. We have theoretically370

justified the strong calibration performance by demonstrating how the proposed robust training371

process guarantees to lower the confidence of incorrect predictions. The extensive evaluation shows372

that the proposed DRE leads to significant calibration improvement without sacrificing the accuracy373

and burdening inference cost. Furthermore, experiments on OOD and Open-set datasets show its374

effectiveness in terms of generalization and novelty detection capability, respectively.375

9



References376

[1] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation377

and self-distillation in deep learning. In The Eleventh International Conference on Learning378

Representations, 2023.379

[2] Yue Bai, Huan Wang, ZHIQIANG TAO, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis.380

In International Conference on Learning Representations, 2022.381

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon382

Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,383

and Karol Zieba. End to end learning for self-driving cars, 2016.384

[4] Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, and Zhangyang385

Wang. Can you win everything with a lottery ticket? Transactions on Machine Learning386

Research, 2022.387

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,388

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,389

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image390

recognition at scale, 2021.391

[6] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable392

neural networks. 2018.393

[7] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model394

uncertainty in deep learning, 2015.395

[8] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, recall and f-score,396

with implication for evaluation. In David E. Losada and Juan M. Fernández-Luna, editors,397

Advances in Information Retrieval, pages 345–359, Berlin, Heidelberg, 2005. Springer Berlin398

Heidelberg.399

[9] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural400

networks. In Proceedings of the 34th International Conference on Machine Learning - Volume401

70, ICML’17, page 1321–1330. JMLR.org, 2017.402

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common403

corruptions and perturbations. Proceedings of the International Conference on Learning404

Representations, 2019.405

[11] Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. Calibrating predictive406

model estimates to support personalized medicine. Journal of the American Medical Informatics407

Association : JAMIA, 19:263 – 274, 2011.408

[12] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.409

[13] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable410

predictive uncertainty estimation using deep ensembles. In Proceedings of the 31st International411

Conference on Neural Information Processing Systems, NIPS’17, page 6405–6416, Red Hook,412

NY, USA, 2017. Curran Associates Inc.413

[14] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.414

[15] Bowen Lei, Ruqi Zhang, Dongkuan Xu, and Bani Mallick. Calibrating the rigged lottery: Mak-415

ing all tickets reliable. In The Eleventh International Conference on Learning Representations,416

2023.417

[16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for418

efficient convnets, 2016.419

[17] Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu,420

Mykola Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep ensembling421

with no overhead for either training or testing: The all-round blessings of dynamic sparsity,422

2022.423

10



[18] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated424

probabilities using bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on425

Artificial Intelligence, AAAI’15, page 2901–2907. AAAI Press, 2015.426

[19] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in427

natural images with unsupervised feature learning. 2011.428

[20] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V.429

Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?430

evaluating predictive uncertainty under dataset shift, 2019.431

[21] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regular-432

izing neural networks by penalizing confident output distributions, 2017.433

[22] John Platt and Nikos Karampatziakis. Probabilistic outputs for svms and comparisons to434

regularized likelihood methods. 2007.435

[23] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad436

Rastegari. What’s hidden in a randomly weighted neural network?, 2019.437

[24] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why438

overparameterization exacerbates spurious correlations, 2020.439

[25] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52. Springer, 2013.440

[26] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify441

classification uncertainty, 2018.442

[27] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.443

Rethinking the inception architecture for computer vision, 2015.444

[28] Bindya Venkatesh, Jayaraman J. Thiagarajan, Kowshik Thopalli, and Prasanna Sattigeri. Cali-445

brate and prune: Improving reliability of lottery tickets through prediction calibration, 2020.446

[29] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective447

of generalization. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,448

Advances in Neural Information Processing Systems, volume 33, pages 4697–4708, 2020.449

[30] Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy,450

Decebal Constantin Mocanu, and Shiwei Liu. Superposing many tickets into one: A performance451

booster for sparse neural network training, 2022.452

[31] Jize Zhang, Bhavya Kailkhura, and T. Yong-Jin Han. Mix-n-match: Ensemble and compositional453

methods for uncertainty calibration in deep learning, 2020.454

[32] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:455

Zeros, signs, and the supermask, 2019.456

11


	Introduction
	Related Work
	Methodology
	Preliminaries
	Distributionally Robust Ensemble (DRE)
	Theoretical Analysis

	Experiments
	Experimental Settings
	Performance Comparison
	Additional Results, Ablation Study, and Qualitative Analysis

	Conclusion
	Summary of Notations
	Training Details
	Optimization
	Hyperparameter settings

	Detailed Dataset Description
	Qualitative Analysis
	Baselines Description:
	Additional Experimentation:
	Comparison with commonly used Dense Calibration Techniques
	Performance of DRE with regards to ensemble members
	Performance with respect to number of models
	Relationship between Diversity and Ensemble Performance
	Performance Comparison with Different Backbones.

	Broader Impacts
	Limitations
	Link to Source Code



